Chinese diamond experiment may help crack one of the world’s toughest codes…

An experiment in China using diamonds has put quantum code-breaking a step closer to reality, threatening to one day break the digital encryption technologies that safeguard banks, governments and the military.  In their experiment, quantum physicists in Hefei, Anhui province, reportedly broke down the number 35 into its factors – the numbers five and seven – on a new type of quantum computing device built inside a diamond.

The process, known as factorization, is the key to cracking the most popular digital algorithm used in encryption today.  The research was led by quantum physicist Professor Du Jiangfeng at the University of Science and Technology of China, and details of the results were published in the journal Physical Review Letters in March 2017.

The popular RSA algorithm, developed by Ron Rivest, Adi Shamir and Leonard Adleman in the 1970s, uses the product of two large prime numbers to encrypt a message.  Only people who know the two prime numbers can decode the message, because it is practically impossible to factor the product of two prime numbers when they were sufficiently large.  An enormous amount of digital computing power and thousands of years would be needed to determine the prime numbers used in the RSA system.  But, in theory, a quantum computer could break a RSA code in the blink of an eye.

Professor Duan Changkui, another researcher involved in the experiment, said many technical challenges had to be overcome before the device could be used to break a code. These problems ranged from precise control of particles to better diamonds.

“The artificial diamonds must be extremely pure, and their nitrogen-vacancy centres perfectly aligned. The manufacturing process is very difficult,” he said.  “It is not easy to predict when the first practical machine could be built.”  But cryptographers were bracing for a battle…

RSA is just one type of algorithm. There are other mathematical methods of encryption that cannot be decoded by large-number factorization (like OTPSME), and these will be the second or third line of defense…

SOURCE: South China Morning Post

Scientists Store One Bit of Data on a Single Atom…

Friends, file this one under “Wow”.  IBM researchers just discovered a way to store data on a single atom.   Data storage is undergoing dramatic evolution, recently researchers successfully stored digital data — an entire operating system, a movie, an Amazon gift card, a study and a computer virus — in strands of DNA.

The IBM researchers have developed the world’s smallest magnet using a single atom and they packed it with one bit of digital data.  Currently, hard drives use about 100,000 atoms to store a single bit of information — a 1 or 0 — using traditional methods.   So, this breakthrough could allow people to store 1,000 times more information in the same amount of space in the future applications.

The discovery, which was described in the journal Nature, builds on 35 years of nanotechnology history at IBM, including their Nobel prize-winning scanning tunneling microscope (STM) that was used to build the atomic hard drive.  The scientists used a single atom of the rare earth element holmium and carefully placed it on a surface of magnesium oxide, which makes its north and south poles hold in a stable direction. The two stable magnetic orientations define the 1 and 0 of the bit.   The researchers then used a very accurate, sharp, and small, needle to pass an electrical current through the holmium atoms that flips its north and south poles, thus replicating the process of writing binary data (1s and 0s) to a traditional magnetic hard drive.

SOURCE: The Hacker News

Scramblecode, a security-oriented Programming Language

Friends, this looks really interesting…

Adding to the existing portfolio of some 700 programming languages is a new release candidate for Scramblecode, a security-oriented offering from Danish software vendor ProgramPartner ApS.  Scramblecode  is all about encryption and safety.

Scramblecode is an easy to learn programming language based on curly brackets and classes,” the company says on its Web site. “It uses encrypted compilation to secure the code, and protects the execution while working with encrypted variables.

The company today announced release candidate 1 (RC1) for Scramblecode, which is available for download and testing that can be done completely off-line on a variety of machines.  The Scramblecode package comes with its own IDE, including a code editor, test bench and debugger. The company said that because Scramblecode implements memory encryption, ordinary debugging and memory analysis tools aren’t effective. Built for Windows development, Scramblecode lets coders load a virtual machine (VM) into memory to execute private assembler instructions and it individually protects each instruction and works with encrypted variables in memory. Furthermore, an attack that cracks just one instruction (or even one bit) could crash program execution.

SOURCE – ADTMag.com

Email Encryption Service Provider ‘ProtonMail’ Now on Tor

ProtonMail-Tor-ServiceIf you look in the VooDoo Tech section, you’ll see we endorse both ProtonMail and Tor.  Both are excellent services if you value your online privacy and now they work together!  ProtonMail, launched in 2014 by a group of MIT and CERN experts, is the largest email encryption service provider in the world having more than two million users. It is the preferred emailing platform of activists and journalists who need to keep information confidential.  In its latest announcement, ProtonMail’s co-founder Dr. Andy Yen stated that they would allow the users to directly access their email accounts via Tor network so that they could counter steps taken by authoritative governments across the globe to minimize user privacy.

Dr. Yen said that it is inevitable to avoid censorship in some countries and they have been “proactively working to prevent this.” Dr. Yen further acknowledged that the reason why they have chosen Tor is that “Tor provides a way to circumvent certain Internet blocks so improving our compatibility with Tor is a natural first step.”

This perhaps looks like a step taken after the recent actions from the governments to curb the public’s access to encrypted platforms and secure internet usage. Such as Egyptian government blocked encrypted chat application Signal and the UK government’s approval of the Investigatory Powers Bill aimed at tracking the activities of web browsers.  Friends, do yourself a favor… Use Tor and get yourself a ProtonMail account.

SOURCE – Hackread.com

LavaBit Relaunches

LavabitFriends, back in 2013, we told you about how Ladar Levison, founder of the encrypted email service Lavabit, took the defiant step of shutting down the company’s service rather than comply with a federal law enforcement request that could compromise its customers’ communications.  The FBI had sought access to the email account of one of Lavabit’s most prominent users — Edward Snowden. Levison had custody of his service’s SSL encryption key that could help the government obtain Snowden’s password. And though the feds insisted they were only after Snowden’s account, the key would have helped them obtain the credentials for other users as well.  Rather than undermine the trust and privacy of his users, Levison ended the company’s email service entirely, preventing the feds from getting access to emails stored on his servers. But the company’s users lost access to their accounts as well.  Levison, who became a hero of the privacy community for his tough stance, has spent the last three years trying to ensure he’ll never have to help the feds break into customer accounts again.

Lavabit is relaunching with a new architecture that fixes the SSL problem and includes other privacy-enhancing features as well, such as one that obscures the metadata on emails to prevent government agencies like the NSA and FBI from being able to find out with whom Lavabit users communicate. He’s also announcing plans to roll out end-to-end encryption later this year, which would give users an even more secure way to send email.  The new service addresses what has become a major fault line between tech companies and the government: the ability to demand backdoor access to customer data. Last year when the FBI sought access to an iPhone used by the San Bernardino shooter, Apple couldn’t get into the phone because the security scheme the company built in to the device prevented it from unlocking the phone without the shooter’s password. (Eventually, the FBI found another way to access the phone’s data, ending the dispute with Apple.)

SOURCE – The Intercept

  • Ads